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We consider the problem of reducing conservative systems to normal coordinates 
by means of the method of regularizing time transformation widely used in cel- 
estial mechanics. Because it is well known that canonic variables have equal 
validity we can consider the reduction of the systems alsp to normal momenta. 

In connection with the reduction mentioned we intwduce the concepts of normal 
and incorhpletely normal system configurations. We study the existence conctir- 
ions for normal configurations, proceeding from the structural properties of the 
Hamiltonian. In particular, we examine these conditions for systems with com- 
plete connections, systems with two degrees of freedom, Liouville-type systems, 
homogeneous systems, systems admitting of a similarity transformation group, 
systems possessing radial symmetry, and some others. 

1. Definition8 and Strtemsnt of the Problem. Weconsider aconser- 
vative system with k degrees of freedom, moving in a certain force field with energy 
constant n. The Hamilton-Jacobi equation has the form 
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H (ql, 92, . . . . qkr dWldq,, . . . . SVlaqk) = h (1.1) 

We say that the system is reduced to normal coordinates and forms a normal configura- 
tion A (fJl, qi, . . . . Qk) relative to the generalized coordinates f~j, if for a suitable 

choice of coordinates qj and reduction time -G the equations of motion split up into 

h- differential equations of the form 

qj” = Gjqj (Oj = con&, j = 1,2,. . . , k) (l-2) 

Here ‘t is a suitably chosen regularizing variable depending, in the general case, on 
time t ; a prime indicates the derivative with respect to 7. A simple example of a 

normal configuration without the regularization of time t is the reduction to normal 
coordinates in the case of small oscillations of a system close to the equilibrium position 

VI= 
Because it is well known that the canonical variables pi and qj have equal validity, 

we can analogously talk about normal configurations of systems also with respect to mom- 

enta pj, if only the pi satisfy differential equations of the form 

Pj” = TjPj (rj = con&, j = 1,2, . . . , k) (1.3) 

A system possesses an incomplete or partial normal configuration if Eqs. (1.2) hold not 
for all the indices j = 1. 2, . . . . k, but for only a part of them, namely, j = 1, 2, 
. ..) Y (1 < Y < /r).In analogous fashion we can speak of an incomplete normal config- 
uration of the system with respect to the momenta pj also. 

It may happen that some of the oj are equal to each other, then we have the case of 

degeneracy @, 31. In particular, the case of complete degeneracy obtains when all the 
or are equal to each other:oj = u (i = 1.2, . . . . k).Certain celestial mechanics problems 

may serve as examples. Thus, for example, in the n -body problem in the special case 

of the so-called constant configurations there obtains a normal configuration corresponding 
to the case of complete degeneracy [4], namely, when the centrobaric bodies perform 
Keplerian motions (with a period common to all of them) along circles with centers sit- 

uated at the system’s center of mass. The so-called central configurations in the n - 

body problem [5, 61 may serve as another example. 
The problem to be considered below consists in the determination of existence cond- 

itions for normal configurations, as a function of the structural properties of the Hamil- 
tonian H = H (p, q). 

2. Fundamental Depend6ncler. The state of conservative system (1.1) is 
described by the canonic system of Hamiltonian equations 

&j/d = 8H/8pj, dPjJ& = -_H /Bqj (j=i,Z,...,k) (2.9) 

Differentiating (2.1) and introducing the Poisson brackets 

(Ip&)=$&$&~$) 
i i * i 

we obtain 

4;’ = tqJy , H), P;’ = (pi, H) 

Here the dot denotes the derivative with respect to t. Hence by 

(2.2) 

(2.3) 

virtue of (1,2), (2.1) 
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and (2.2) we can obtain a 
case there exists a normal 

Ic I 

condition which the Hamiltonian function H should satisfy in 
configuration without a regularizing time, i.e., when r = t 

(2.4) 

In the case when the function H (p, 9) IS a superposition of functions each of which de- 
pends only on one pair of canonic variables pi and qj , 

H (p, q) = H, (PI, 41) + H, (Pz, qz) + * * * + Hk (pk, ql;) (2.5) 

condition (2.4) takes the simpler form 

a”Hj aH. 
3 

iPHi aHj 

aqjaPj hj -apj” - = GjjQj 
aqi 

(j=l,2,...,li) (2.6) 

If we make use of the integrals 

Hj (Pj, Cj) = aj (a1 + a, + . * * + uk = h, (2.7) 

and note that 

aHj aHj apj -- 
aqj +-- aPj a4j 

= 0 

then after some simplification and a subsequent integration condition (2.6) can be redu- 
ted to the form 

aHj 2 

i-1 aPj 
= 3jQj’ + Cj (cj = const) (2.@ 

This result can be obtained in another way also if we make use of the first integral of 
the equations of motion (1.2). 

Theorem 2.1. Suppose 
relative to the coordinates yj 
integrals of the form 

that system (2.1) admits of a normal configuration both 

as well as relative to the momenta pj. Then there exist 

4j = % (rj = con&, i=1,2 ,..-, k) (2.9) 

Indeed, let pj and qj satisfy the equations 

qj *. = ojqj, p,;” = ojpj (i=1,‘2,...,k) 

Hence qj”pi - pj”qj = 0 and, consequently, as a result of integration we obtain qj pj - 

’ - Pj qj = aj which by virtue of Eqs. (2.1) also leads to integrals of form (2.9). As an 
example, consider a natuial conservative system with a Hamiltonian H (p, q) of the 

form k 

(H (P. 9) = 4 
- j=l 

Here the hypotheses of Theorem 2.1 are satisfied and there exist integrals of form (2.9) 
which may be written as 

pj2 - cJjqj2 = aj (al+a:!+...+ak=2h) 

3. Timo Rogulrrisrtion. In many cases we can succeed in detecting a nor- 
mal configuration by means of introducing a new regularizing variable ‘t = r (t) defined 
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by an integral of the form 
t 

rt= @ s (u = u (P O), q (f)) # 0) (3.4) 

Here u (P, 9) . IS a suitably selected continuous scalar function of the 2k variables pi 
and qil not vanishing in that region G of the phase space E2’, wherein the original 
system (2.1) is being considered. 

Time transformations similar to (3.1) have been used, in particular, by Birkhoff [7] 
to study general Lagrangian systems and in other cases, for example when treating reg- 
ularizing transformations in the three-body problem p, 81. Under the transformation 
(3.1) indicated Eqs. (2.1) lose their Hamiltonian form and take the form 

dqj 8H dp. 

-=“-apj’ 
3 

2H 

dr dz =--udgj 0’=1,2,...,k) (3.4 

However, as Poincare [8] had noted, can once again be given a Hamiltonian form by 
introducing a new function P (p, q) = u (H - h), where h is the energy constant for the 

solutions Pj (t) and qi (t) of system (2.1). To be convinced of this it is sufficient to 
differentiate F (p, q) with respect to the variables pj and qj and to note that by virtue 
of the energy integral the equality H (p, q) - h = 0 is satisfied on the set of solutions 
Pj (1) and Qj (t) of system (2.1), corresponding to the energy constant h System (3.2) 

takes the Hamiltonian form 

dq. (7F 
3 dPj 8F 

dz =apjy 
-=-- 

dr ‘Qj (F (P7 9) = h’) (3.3) 

Here F (p, 9) is the new Hamiltonian function and h’ the new energy constant. It should 

be noted that with regard to transformation (3.1) not all solutions of system (3.3) will 
correspond to solutions of system (2.1) but only those which correspond to the value 

h’ = 0 of the new energy constant. Solutions of system (3.3) for values h’ + 0 of the 
energy constant have no relation whatsoever with the solutions of system (2.1). 

Theorem 3.1. Suppose that as a result of transformation (3.1) system (2.1) admits 

of a normal configuration relative to the coordinates Qj and relative to the momentapj 
and, consequently, 

qj” = Ojqjy pj” = Ojjpj (j=l,Z:.. ,k) (3.4) 

Then there exist integrals of the form 

u (P, q) (Qi’Pj - Pj’Qj) = Ctj (ctj = const) (3.5) 

For the proof we set up the difference between Eqs. (3.,4) having first multiplied them 

by Pi and qj il respectively. By integrating we obtain Yj’pj --p)j’qj = aj. We can give 
form (3.5) to these integrals if we only note that by virtue of (3. l), & = udt. We 
assert that a theorem analogous to 3.1 can be formulated also in the case of an incom- 
plete normal configuration. 

4. System8 with Complete Connectiona [e]. Since a natural conserv- 
ative system with one degree of freedom is invertible [5], its Lagrangian L can be wri- 
tten as follows: 

L z= ‘iz fn (q)qa2 - V (q) (4.1) 
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Here v ((I) is the potential energy and m (7) is a positive function, the so-called equi- 
valent mass of the system [lo]. 

Theorem 4.1. Let a natural conservative system with one degree of freedom 

(4.1) move in a force field with potential v = 1/2(5p. Then this system admits of a 
normal configuration. 

Indeed, having written out the energy integral and by introducing a new variable 
and setting dT = dt / (m (q) )‘/J, we obtain ‘1” = O(I. 

Theorem 4. 2. Suppose that system (4.1) moves in force fields with potentials 
v, (q) and V, (a) of the form 

Uq) = l/z am(q) (A - v”), V2 ((I) = l/z’5 (m(q) )-’ (A - (12) (“t.0) 

Then in both cases there exists a normal configuration for an energy constant h -7 0 . 
To be canvinced of this it is sufficient to write out the energy integral for the condi- 

tion h = 0, to cancel, respectively, the nonzero factors m (q) and (rn (q) )-land to 
introduce in the case of Vz (q) a new variable T, bv setting dz = dt / m (q). As a result 
after differentiating we obtain q” = Gg, (I” = OQ respectively. We see that in the 

case of V, (9) a normal configuration obtains also relative to the momentum p. 

6. Syltemr with a Radial Symmetry. For such systems the Lagrange func- 
tion L remains (for k > 2) invariant under an arbitrary rotation of the k-dimensional 

Euclidean space around the origin and has the form [5] 

L = + g (r) $J Xj" - V (r) 
i=l 

(9 = .r12 -t . . . --t xk2, g (r) > 0) 

We introduce a new variable T by setting 1~ = (g (r) )‘/l and we set up the Lagrange 
equation 

“‘j av 5, -3 
dz2 = - ar r (dt = (F: (r))‘lzdx-) 

Hence, in particular, it follows that 

l’ir j" - ,~jZ"i = (,ri 'j - ,/‘j ‘.i) ~ ~ 

and, consequently, there exist integrals of the form 

Jirj , - fjri E Xij (rij 7 const) 

Setting J7 = - l/, or” we obtain the normal configuration 

“j” = 5.l’j (;“I, 2,..., k) 

8. Syrtem8 with Two Degree: of Freedom. For such systems the equa- 
tions of motions in the uninvertible case can be given the normal form [5, ‘71 

,,.** - Q (.r, Y) y’ = - V,, y” + Q (,r, y) .c’ = - v, (Q(GY)=+O) (6.1) 

Certain problems of celestial mechanics [ 111 also lead to such equations. 
Theorem 6.1. A conservative system with two degrees of freedom (6.1) in the 

uninvertible case (Q =j= 0) cannot be reduced to a normal configuration by means of 
time regularization (3.1). 

Indeed, by introducing the new variable 7 (3.1), where u (z, Y) is a properly selected 
function, and by using the transition formulas 
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d 1 d d2 2 du d 1 d” 
- =: 

dt --I 
u dr JjT-=-7dtdt+u”dt’! 

we take (6.1) to the form 

zw - u’x’ - shy = - u2vr, y” - u’y’ + Sk45 = - uvy (‘3 .2) 

To obtain the normal configuration it is necessary to get rid of the terms which are linear 
with respect to the velocities, which leads to the two conditions 

U.2” + Quy’ = 0, Qux’ - U’dJ = 0 

By equating the determinant of this system in the variables Z’ and y’ to zero, for the 
determination of 1~ (x, y) we obtain the relation u‘” + VU’J = 0, which is impossible since 

P # 0, and u (I, y) is a real positive function (v > 0). The theorem is proved. 
However, as regards systems of invertible type (52 = 0), here by means of time regu- 

larization (3.1) we can obtain a normal configuration. Thus, for example, in the two- 

body problem the system is reduced to a normal configuration by a Levi-Civita transform- 

ation [ 121. 

7. Systems of Liouville Type. For such systems the Hamiltonian function 
H (p, q) can be brought to the form 

k 

H= & 3 (Pj” + 2vj t%)) (H (P, 9) = hj 
3=1 

24 (9) = ul(ql) + % tqa) + * - * + % hc) tu (4 > 0) 

(7.1) 

The Hamiltonian equations for Liouville-type systems (7.1) have the form 

Qj’ = +Pj, p’* = + .+ 
j 

Wj (q.i) - vj (%I) (7.2) 

Hence, by using a well-known method [l], we obtain the following system of equations: 

uqj’ = (2CDj (qJ)” (@i (qj) = huj (qj) + J”j (qj) + ~1) (7.3) 

Here h is the energy constant and yj are the constants of integration satisfying, by vir- 
tue of the energy integral, the condition Yr f,ys i- . . . + yk = U. 

Theorem 7.1. For the Liouville-type system (7.1) being considered let the func- 
tions mj (qj) in (7.3) have, for a specified value of the energy constant h the form: 

Oj (qj) = ‘/a OjQj’ + ~3 (Cj = cons). Then the Liouville system (7.1) admits of a 
normal configuration both relative to the coordinates Qj as well as relative to the 
momenta p j . 

To be convinced of this we introduce a new variable r by setting dr = dtiu (q) 
(u (q) > 0). We obtain 

Q’j = (GjQj’ + 2Cj)“’ 9 Qj” = l/z (Gjqj’ + 2Cj)-“‘2Gjj4jQj’ = CJjqj 

Further, we write down the following chain of equalities: 

Pj = Qj’9 Pj’ = Qj” = Gjqj, Pj” = Gjqj’ = GjPj 

We remark that Theorem 7.1 is valid also in the case when (Dj (qj) is a quadratic func- 
tion of the form aj (qj) = 1/2ajqj2 + ajqj + bj (aj, bi = con&), since this case 
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can be reduced to the previous one by a linear substitution. 

8. Homogeneous Syatemc. Such is the name given to Liouville-type systems 
(7.1) when u (q) 3 1, while the kinetic energy T (q, q’) and the potential energy V (q) 
are the superpositions of homogeneous functions: 

T(q, q’) = -$$J ajqjYqj’aw V(q) = i cjQj” lajp ‘j = comt) (8.1) 
j=l j=l 

Having written out the equations of m&on 

ajQj’qj”+ ‘/zVajQ~~l qje2 + TlCj&-l = 0 (8;2) 

as a result of integrating we obtain a system of k first integrals 

‘/z~qj*(rr’s $ cjqj’ll = hj (hl + . . . $hh =h; i=i,Z,...,k) (8.3) 

where h is the energy constant for the original system (8.1). 
Let us determine those values of parameters v and n for which normal configurations 

obtain. Having made the change of variables qj = ~j-“, where a is some constant, and 
having determined Qj’ and qj”, we obtain the equations of motion in the following 
form: 

- &rjEj=v-v-i Ej” + aaj (1 + a + F) Ej’sE;“‘-‘-s + ncj&n=+a = 0 

We now choose a in such a way that the coefficient of Eje2 vanishes. This yields a =I 

= - 2 (2 + v)-l (2 + v # 0) and, consequently, as a result of simplifications we 
obtain 

n(2+V)+EjP=0 p = “n2--+Vv- 2 ) (8.4) 

To obtain the normal configurations we must set p= l.Here, 2 + v - n = 0 and, 
consequently, (8.4) takes the form 

Ej” + GjEj = 0 (Gj = ‘/a n*Cj I aj) @.5) 

We assert that the relation 2 + v - n = 0 obtained is the condition under which the 
natural Lagrangian systems (8.1) admit of a one-parameter group of geometric similar- 
ity transformations of the form qj* = hqj [13]. 

Theorem 8.1. For homogeneous systems (8.1) let the degrees of homogeneity of 

the combined expression for the kinetic energy T* (q, p) and the potential energy V (q) 
relative to Qj be related by the condition 2 - v - n = 0. Then there exist integr- 

als of the form 

(41’P1- P1’41) + (Qz’Pa - Pa’&) + - . . + (Qr’Ptt - Pk.qk) = nh (8.6) 

Indeed, since the generalized momentum pj = UjQ”jQ’~~ the Hamiltonian function 
has the following form: 

k k 

H (P, 9) = + 2 uT1qiYpj2 + 2 C'qjn 3 

j-1 i=l 

(8.7) 

Hence by virtue of Euler’s theorem on homogeneous functions, and also from the energy 
integral H (p, q) = h,we obtain 

-+i + ~ qj = (2 - v - n) T* + nh 
I 

P.8) 
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which leads, by virtue of the condition 2 - v - n = 0 ,to integrals (8.6). 
Theorem 8.2. Suppose that a homogeneous system with Hamiltonian (8.7) admits 

of a normal configuration both relative to the coordinates Qj as well as relative to the 
momenta pj. Then, the degrees of homogeneity of the combined expression for the 
kinetic energy T* (q, p) and the potential energy V (q) relative to coordinates Qj are 

v = U and n = 2,respectively. 
Indeed, by virtue of the theorem’s hypotheses we have qj” = crjqj, Pj” = ojpj and, con- 

sequently, qj”pj-pj”qj = 0 which, after integration, yields qg’pj - pj’qj = aj (aj = comt). 
By summing the integrals obtained over index j and using the Hamiltonian equations 

(2.1). and also relations (8.8), we obtain 

(2 - v 6 n) T* (q, P) + nh = a (a, + . . . + &k = a) 

which leads to the condition 2 - v - n = 0. But for homogeneous systems (8.1) admitt- 

ing of a normal configuration relative to coordinates qj the condition 2 + v - n = 0 

must be fulfilled, as was shown above. Comparing the two conditions obtained involving 
v and n, we obtain v = 9 and n = 2. 

9. Similrr Syltcm:. Natural conservative systems (8.1) admitting of a group 
of similarity transformations 

q; = A%* t’ = zt (h, z = const) (9.1) 

fall in this class. This means that if a certain solution Qj = Qj (t) of the system of 
equations exists, then a solution of the form 

Qj’ = hqo (z-‘t’) = hqj (hn’2-v’2-1 t’) 
(A #O) 

(9.2) 

exists also. This result follows from the fact that by virtue of transformations (9.1) the 
relation hz+r-np = i (9.3) 

ensuing from similarity considerations [ 141 must be fulfilled for the systems (8.1) being 
examined. 

Theorem 9.1. let system (8.1) possess a normal configuration Qj” = Ujqj (i = 

= 1, 2, . ..) k) and, furthermore, admit of the group of similarity transformations (9.1). 
Then the geometric similarity condition 2 + Y - n = 0 is fulfilled. 

This result follows immediately from condition (9.3) as well as from the existence 
condition for a normal configuration, since here r -’ = I. Note that for v = 0 together 
with the solutions Qj = qj (t) there exist, by virtue of (9.2), also the solutions 

q; = hq, (P-b’) (f’= t) 

which coincides with the result obtained earlier by Wintner [5> 
10. Gsnerrlired Syrtem,. Conservative systems in which the Hamiltonian 

function H (p, 9) has the form 

H (p, q) = ff* (P, 9) 1 u (P, q) (ff (P, 9) = h u (PI a)> 0) (10.1) 

belong here. Here H* and u are superpositions of functions Hj and uj each of which 
depends only on pj and Qj (10.2) 

H* = H, (P& + . . . . + Hk (P,, qk), 24 = Ul (Pl41) + - - * + ulr (P,, q,) 

These systems are a generalization of Liouville-type systems and fall into the class of 
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inteRrable systems [15j. By virtue of (10.1) and (10.2) and of the energy integral 
H*(p, q)--hu (p, q)=O, the Hamiltonian equations, after some manipulations, 
be brought to the form 

can 

u dpi = _ aKj 
dt 5 (Kj (pjt qj) = Hj - huj) (10.3) 

Theorem 10.1. Let Hj (Pj, qj) and ZJ~ (pj, qj) be homogeneous functions of 
degrees m ano n , respectively, in each of the varianles pj and qj. Then the bilinear 

form Q (P, 9) = plql + P2q2 t . . . t p kqk of the canonical variables pj and qj 
is an integral of the equations of motion. 

Indeed, by multiplying Eqs. (10.3) by pi and Qj ,respectively, and adding them, 

after summing over index j we obtain 

(loe4) 

Hence, by virtue of the theorem’s hypotheses and also of Euler’s theorem on homogen- 
eous functions, we obtain 52 (p, q) = Cord,. 

Theorem 10. 2. Let the hypotheses of Theorem 10.1 regarding the degrees of 

homogeneity of the functions Hj (pj, qj) and Uj (pi, qj) be fulfilled. Then there exists 
an integral of the form 

Ml Pl - PI’QI) + * * * + (Qk’Pk - P&J,) = 2h (m - n) (10.5) 

In order to be convinced of this we multiply Eqs. (10.3) by pj and qj ,respectively, 
and we take their difference. After summing over index 1 we ootain, by virtue of Euler’s 
theorem on homogeneous functions, 

u (P, 4) ((Qt’P1- PI’QI) + . * * + (qk’Pk - P&J) = 2mH* (P, 9) - 2&u (P, 9) 

Replacing here fi* (p, q) by hu (p, q), which follows directly from the energy integral, 
we obtain (10.5) after cancelhng the nonzero factor u (p, q). 

Theorem 10. 3. Let H depend only on pi and be a homogeneous function of 
degree m of Pj and let Uj depend only on Qj and be a homogeneous function of degree 
n of qj ,Then tar nonzero values of the energy constant h and for m + n # 0 there 

exists an integral admitting of a decomposition into a bilinear form 52 (p, 9) and a 
secular term (m + n)ht. 

Indeed, by virtue of Euler’s theorem on homogeneous functions, from (10.4) we obtain 
~$2 z mH* + hnu = u (m + n)h. Cancelling the nonzero factor u tp, q) and in- 
tegrating, we obtain the integral 

Q (p, q) = (m + n)ht + const (10.6) 

Corollary 10.3. When the hypotheses in the preceding theorem, regarding the 
degrees of homogeneity, are fulfilled, the bilinear form LL (p, q) is an integral of 
the equations of motion in the two cases: a) fi = u, b) (m + n) =U. This follows 

directly from integral (10.6). 
Theorem 10.4. Let Hj (pj, qj) and Z+ (pj, qj) be quadratic functions of the 

form 
Hj = lj2 (a# + cj$)p uj = ‘12 (b$ -I- djP?> (aj, bj, Cj, di = COUSt) (10.7) 
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Then system (10.1) admits of a normal configuration both relative to the coordinates 

% as well as relative to the momenta p;. 
Indeed, by introducing a new variable r by setting& = dt] U, by virtue of (10.7) 

Eqs. (10.3) reduce to the form 

9; = (GTj - hdj)pj, _~j = (-cj + hbj)qf 

Hence there follows immediately the existence of normal configurations both relative 
to the coordinates as well as relative to the momenta, 

(II = aj9jS 
pi = ajpj (aj = (aj 7 hdj)(- cj + hbj)) 
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